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Summary  
Factor analysis has been found to be suitable for the analysis NMR data of 

polymers which contain multiple components. Two series of ethylene/propylene 
copolymers have been studied by this technique. In general, the number of components 
that can be resolved from NMR data depends on both the quality and the quantity of 
available experimental data. 

Introduct ion 
Many commercial polymers are compositionally heterogeneous and contain two 

or more components. A mulficomponent polymer may result, for example, from multi- 
stage reactions where different amounts of monomers are fed into a reactor at different 
times. Alternatively, the multiple components may be due to deliberate blending of 
polymers with different compositions to optimize end-use properties or to consume off- 
spec materials. Multicomponent polymers may also arise as a result of different kinds 
of initiators, catalytic sites, or propagating species that are present in the polymerizing 
medium. Furthermore, these may originate from phase separation that sometimes occurs 
during polymerization. Conformational differences arising from bond torsion variations 
within the amorphous phase and crystallinity represent other forms of heterogeneity. 
Whatever the cause(s) of this multistate heterogeneity, the resulting polymer contains 
components with different composition (or tacticity) and is, in general, more difficult to 
analyze in the context of structure/property correlations. 

NMR is usually the preferred technique to study polymer microstructure. A 
number of NMR approaches have been devised to analyze multicomponent polymers (1- 
8). The analysis can be carded out on a single polymer sample, or (more preferably) on 
a series of related polymers. It has been pointed out (7) that four types of situations are 
particularly suited for a systematic NMR/computational analysis: 
1. A given polymer is fractionated and the NMR data of the fractions are analyzed 

simultaneously. 
2. A given polymerization is sampled at various conversions and the polymers analyzed 

simultaneously. 
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3. A series of polymers can be prepared using the same experimental procedures but with 
different comonomer feed ratios. 

4. A series of polymers may be made under essentially the same experimental conditions 
whereby only a single variable is systematically varied. Examples are polymers made 
with a Ziegler-Natta catalyst where one experimental variable is changed that affects 
the activities of the different catalytic sites but does not significantly affect the nature 
of the sites. 

A major difficulty in analyzing multicomponent polymers by NMR is to ascertain 
the number of components present. Sometimes, complementary or auxiliary data are 
available. For example, if other analytical data (e.g., SEC, TREF, and fractionation) have 
been collected, these may be incorporated in the analysis (8,9). Polymerization 
procedures, laboratory notebooks, and personal observations may also provide useful 
clues. However, such data are not always available or helpful. In these cases, the NMR 
data need to be scrutinized to determine the number of components. 

In previous work (5-9), this problem has been dealt with by analyzing the data 
using an increasingly larger number of components. The deviations between the observed 
and the calculated data are calculated and compared with the experimental error (thereby 
serving as the goodness-of-fit criterion). Usually the minimum number of components 
that can satisfactorily fit the observed data is taken to be the answer. It is recognized that 
if the data can be interpreted with (n) components, it can also be fitted to (n+l) 
components. 

In this work, we propose to use factor analysis (10-13) as an alternative method 
whereby the number of components in a multicomponent polymer may be determined. 

Factor analysis 
Factor analysis (also known as principal component analysis) is a chemometric 

technique whereby analytical data may be represented in a small and manageable number 
of dimensions so as to observe groupings of objects, oufliers, etc. which define the 
structure of a data set (11). 

In NMR analysis of copolymers we typically deal with triads, and sometimes 
tetrads, pentads, and higher n-ads. For homopolymer tacticity we usually treat tetrads, 
pentads, or hexads. Without loss of generality, we shall confine our analysis to 
copolymer triads in this work. For ethylene/propylene copolymers, there are six triads 
(n=6): PPP, PPE, EPE, PEP, EEP, and EEE. For a series of m polymer mixtures, a data 
matrix [D] can be written with the dimension n x m. 

A covariance matrix [C] is defined as follows: 

[C] = [D] t [D] (1) 

The rank of the covariance matrix may be determined by solving the following eigenvalue 
problem: 

[C] [E] = [E] [~] (2) 

where [E] is the matrix of eigenvectors and [~,] the diagonal matrix of eigenvalues. In 
the absence of noise and experimental error the number of non-zero eigenvalues is the 
number of independent components (factors). In the best cases involving experimental 
data there is a clear delineation between two groups of eigenvalues having large and small 
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magnitudes representing the pure and noise/error components, respectively. Alternatively, 
we may use Malinowski's indicator function (IND) (10): 

~J (3) 1 l - ~ x  
IND - (m - p) 2 [n(m - p) 

where p is the number of components. IND reaches a minimum when the appropriate 
number of factors is used. It is important to recognize that factor analysis determines the 
number of linearly independent components in a series of mixtures. As such the analysis 
can only detect compositional variation as reflected within the data set. For example, if 
the ratio of two species remains constant within the data set, even if their absolute 
concentration changes, only a single pure component will be associated with the pair. 

Two examples of this treatment are given below. Both involve heterogeneous 
Ziegler-Natta catalysts which are known (14) to contain more than one active catalytic 
site. 

Example 1 
Xu, et al. (15) pre-polymerized a small amount of 1-octene using the 

TiCI3/AI(CzHs)3 catalyst and then proceeded to copolymerize ethylene and propylene with 
the same catalyst. They reported the triad data of copolymers made at several pre- 
polymerization times. The original data are shown in Table 1. A prior data analysis (7) 
has indicated that the polymer contains more than one component. This data set appears 
to be a good test case for factor analysis. 

The [D] matrix can be readily set up: 

[D] = 
I1028028ii 1 9.7 8 9 9. 

5.5 2 2 2.6 

3.7 1.9 1 

7.8 9.3 9 

19.7 23.7 23 

Each polymer sample is represented by a single column with rows within the column 
corresponding to concentrations of different triad species within the sample. Note that 
the intensities are not normalizext. Calculation by Equations 1 and 2 can be made by the 
factor analysis routines described previously (12). The eigenvalues are plotted in Figure 
1. The figure indicates that two components are appropriate for this system. 

Another way to study the data is to regenerate the mixture data using the original 
data matrix coupled with eigenvectors associated with pure components. This approach 
essentially takes advantage of information present in all samples to improve the quality 
of individual measurements. The calculated data can then be compared with the observed 
data. The correct number of pure components will reconstruct "improved" estimates of 
the data associated with individual samples. Although use of eigenvectors beyond the 
actual number of pure components yields progressively smaller differences between the 
original and reconstructed datasets, the differences between using the actual number of 
pure components and excessive components are not statistically significant. These are 
given in Table 1. The two-component case does indeed produce smaller mean deviations 
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Table 1. 

Sample 

NMR (unnormalized) triad data a'b for ethylene/propylene copolymers 
showing the effect of  pre-polymerization with l-octene. 

Triad Intensities 
pre-polym. 

time(h) PPP PPE EPE PEP EEP EEE 

0.0 obsd. 21.0 9.7 5.5 3.7 7.8 19.7 

2-comp. 21.0 9.7 5.5 3.7 7.8 19.7 

1-comp. 22.6 7.9 2.8 1.9 7.5 19.2 

0.5 obsd. 28.0 8.9 2.2 1.9 9.3 23.7 

2-comp. 28.3 9.1 2.6 1.6 9.1 23.3 

l-comp. 27.7 9.7 3.5 2.3 9.2 23.5 

2.0 obsd. 28.9 9.1 2.6 1.2 9.0 23.0 

2-comp. 28.6 8.9 2.3 1.4 9.2 23.4 

1-comp. 27.9 9.7 3.5 2.3 9.3 23.6 

Observed data from res 15. 
For one-component analysis, SSQ = 23.3, mean deviation = 0.9. 
For two-component analysis, SSQ = 0.9, mean deviation = 0.2. 
(SSQ = sum of the squared deviations.) 
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than the one-component case (0.2% versus 0.9%). If  the error in the data is on the order 
of 0.5%, it should be possible to distinguish the two-component case from the one- 
component case. 

Example 2 
Terano and Ishii (16) reported NMR triad data of  several samples of  

ethylene/propylene copolymers made with the TiC14/ethyl benzoate/MgCl 2 catalyst 
subjected to mechanical grinding at various times (Table 2). The data have been 
previously analyzed and shown (7) to contain at least two components. The [D] matrix 
is: 

2 17 16 19 18] 
ii 23 21 19 17 

18 i0 ii I0 12 

[D] = 5 10 12 i0 ii 

15 15 16 21 17 

49 25 24 21 25 

Computation is carried out as before and the eigenvalues are displayed in Figure 
2. For this data set, the IND values are also calculated and displayed in Figure 3. It is 
clear that the data are best described by either 2 or 3 components. The IND values reach 
a minimum at p = 3. 

We can again verify the number of components by regenerating the (theoretical) 
data matrix and assuming a varying number of pure components. The calculated data for 
one, two, and three eigenvalues are summarized in Table 2. It is important to note that 
the mean deviations between the observed and the reconstructed data are 4.0%, 0.9%, and 
0.5%, corresponding to one-component, two-component, and three-component cases 
respectively. Thus, how well we can resolve the data into two or three components 
depends, in part, on the precision and the accuracy of the NMR data. In this case, if the 
experimental error of the data is 0.5% or less, then we can justifiably use three 
components to carry out further analysis. If the data error is around 1%, then the data, 
on their own merit, do not justify the use of three components. 

Comments 
It is perhaps not surprising that the ability to ascertain the number of  components 

depends on the quality and the quantity of data available. Thus, the smaller the 
experimental error, the more component(s) we can discern from data analysis. Moreover, 
the more data there are, the more information we can obtain through analysis. As a case 
in point, we can probably treat example 2 (with a larger [D] matrix) as three-component 
copolymers, whereas the more limited data of example 1 permit its treatment only as two- 
component copolymers. 

For convenience, the methodologies described herein are summarized in a scheme 
(Figure 4). Factor analysis has the advantages that equal weight is placed on each data 
point and that the evaluation of  the data is relatively objective. Although only copolymer 
triad data are illustrated in this work, this analysis can be readily extended to higher order 
sequences (e.g., tetrads, pentads, and hexads) in copolymers and tacticity data of  
homopolymers. 



1.20 

0 . 4 0  

1.00  

0 . 8 0  

0 . 6 0  

0 . 2 0  

0 .00  
0 

Figure 2. 

w 

1 2 3 

0 . 3 0  

560 

�9 
D 
(U 
> 
C 
G) 
O~ 
�9 

4 5 

# c o m p o n e n t s  

Plot of eigenvalue versus component number for example 2. 

0 . 2 5  

2 
- 2  

0.20  

0 . 1 5  

0 . 1 0  

0.05 

0 . 0 0  
0 

I I 

1 2 

# 

I t 

3 4 

c o m p o n e n t s  

5 

Figure 3. Plot of IND value versus component number for example 2. 



561 

Table 2. 

Sample 

NMR triad data a~b for ethylene/propylene copolymers showing the effect 
of catalyst grinding times. 

Triad Intensities 
grinding 
time(h) PPP PPE EPE PEP EEP EEE 

Ao 0 obsd. 2.0 11.0 18.0 5.0 15.0 49.0 

3-comp. 2.1 10.9 18.1 5.1 14.9 49.0 

2-comp. 2.1 11.1 18.1 5.2 14.6 49.1 

1-comp. 16.0 20.6 14.3 10.8 19.2 34.0 

A5 obsd. 17.0 23.0 10.0 10.0 15.0 25.0 

3-comp. 16.7 22.8 10.5 11.1 14.9 24.8 

2-comp. 17.5 20.1 11.0 10.8 17.5 24.4 

l-comp. 13.5 17.4 12.1 9.1 16.2 28.7 

Alo 10 obsd. 16.0 21.0 11.0 12.0 16.0 24.0 

3-comp. 16.7 21.1 10.6 10.7 15.9 24.3 

2-comp. 17.1 19.7 10.8 10.6 17.2 24.-1 

1-comp. 13.3 17.1 11.9 9.0 16.0 28.3 

A15 15 obsd. 19.0 19.0 10.0 10.0 21.0 21.0 

3-comp. 19.7 18.3 10.6 10.9 20.1 21.1 

2-comp. 18.9 20.8 10.1 11.2 17.6 21.5 

1-comp. 13.1 16.8 11.7 8.8 15.7 27.8 

A30 30 obsd. 18.0 17.0 12.0 11.0 17.0 25.0 

3-comp. 16.8 18.0 11.3 10.1 18.3 24.8 

2-comp. 16.4 19.3 11.1 10.3 17.0 25.0 

1-comp. 13.3 17.2 11.9 9.0 16.0 28.3 

Observed data from ref.16. 

For one-component analysis, SSQ = 848.6, mean deviation = 4.0. 
For two-component analysis, SSQ = 50.0, mean deviation = 0.9. 
For three-component analysis, SSQ = 12.5, mean deviation = 0.5. 
(SSQ = sum of the squared deviations.) 
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Figure 4. Factor analysis scheme used for the determination of the number of 
components. 
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